The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.
Document OCR using DeepSeek-OCR
This dataset contains markdown-formatted OCR results from images in NationalLibraryOfScotland/medical-history-of-british-india using DeepSeek-OCR.
Processing Details
- Source Dataset: NationalLibraryOfScotland/medical-history-of-british-india
- Model: deepseek-ai/DeepSeek-OCR
- Number of Samples: 50
- Processing Time: 13.6 min
- Processing Date: 2026-02-14 19:17 UTC
Configuration
- Image Column:
image - Output Column:
markdown - Dataset Split:
train - Batch Size: 8
- Max Model Length: 8,192 tokens
- Max Output Tokens: 8,192
- GPU Memory Utilization: 80.0%
Model Information
DeepSeek-OCR is a state-of-the-art document OCR model that excels at:
- LaTeX equations - Mathematical formulas preserved in LaTeX format
- Tables - Extracted and formatted as HTML/markdown
- Document structure - Headers, lists, and formatting maintained
- Image grounding - Spatial layout and bounding box information
- Complex layouts - Multi-column and hierarchical structures
- Multilingual - Supports multiple languages
Dataset Structure
The dataset contains all original columns plus:
markdown: The extracted text in markdown format with preserved structureinference_info: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="train")
# Access the markdown text
for example in dataset:
print(example["markdown"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}")
Reproduction
This dataset was generated using the uv-scripts/ocr DeepSeek OCR vLLM script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\
NationalLibraryOfScotland/medical-history-of-british-india \\
<output-dataset> \\
--image-column image
Performance
- Processing Speed: ~0.1 images/second
- Processing Method: Batch processing with vLLM (2-3x speedup over sequential)
Generated with UV Scripts
- Downloads last month
- 22