π PPO Agent: LunarLander-Kratuzen
This is a trained PPO (Proximal Policy Optimization) agent for the LunarLander-v2 environment, built with Stable-Baselines3.
Repo ID: KraTUZen/LunarLander
Model name: LunarLander-Kratuzen
π Performance
- Mean Reward: 266.40 Β± 21.38
- Episodes Evaluated: 10
- β Consistently lands successfully, showing stability and robustness.
π οΈ Usage
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
import gymnasium as gym
# Load model from Hugging Face Hub
model = load_from_hub(
repo_id="KraTUZen/LunarLander",
filename="LunarLander-Kratuzen.zip"
)
# Create environment
env = gym.make("LunarLander-v2")
# Run a quick evaluation loop
obs, info = env.reset()
for _ in range(20):
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
if terminated or truncated:
obs, info = env.reset()
env.close()
π¦ Training Setup
| Parameter | Value |
|---|---|
| Algorithm | PPO |
| Policy | MlpPolicy |
| Timesteps | 1,000,000 |
| n_steps | 1024 |
| batch_size | 64 |
| gamma | 0.999 |
| gae_lambda | 0.98 |
| ent_coef | 0.01 |
π― Key Takeaways
- Achieves high reward and stable landings.
- Ready-to-use with Hugging Face Hub.
- Reproducible training setup for reinforcement learning experiments.
- Downloads last month
- 87
Evaluation results
- mean_reward on state-action-landing-dataself-reported266.40 +/- 21.38