Devstral-small-IFC-ACC LoRA

A LoRA adapter fine-tuned on Devstral-Small-2 24B for automated IFC compliance checking in the AEC (Architecture, Engineering, Construction) domain.

Given a natural-language compliance requirement (German), the model generates executable code to validate IFC building models — selecting the appropriate method and producing SQL, Cypher, or IFCOpenShell Python code.

Tasks

Task Description
Method Selection Classify which query method(s) to use: SQL, Cypher, IFCOpenShell
SQL Generation Generate SQL queries against a PostgreSQL schema parsed from IFC
Cypher Generation Generate Cypher queries against a Neo4j knowledge graph of IFC entities
IFCOpenShell Code Generate Python code using IFCOpenShell for geometric/spatial checks

Training

  • Steps: 156 (3 epochs)
  • Final loss: 0.23 (from 1.61)
  • Token accuracy: 92.4%

LoRA Configuration

Parameter Value
Rank 8
Alpha 16
Dropout 0.05
Target modules q, k, v, o, gate, up, down proj

Hyperparameters

Parameter Value
Learning rate 2e-5
Batch size 2 × 8 gradient accum = 16 effective
Scheduler Cosine (warmup 8%)
Optimizer AdamW 8-bit
Max sequence length 2048
Precision bf16

Usage

With vLLM (Recommended)

vllm serve mistralai/Devstral-Small-2-24B-Instruct-2512 \
  --enable-lora \
  --lora-modules devstral-ifc-acc=Balaharikaran/devstral-ifc-acc-lora-v2 \
  --max-model-len 8192 \
  --quantization fp8

Intended Use
Automated compliance checking of IFC building models against regulatory requirements
Research on domain-specific LLM fine-tuning for AEC/BIM
Part of an MSc thesis at TU Munich

Framework Versions
PEFT 0.18.1 · TRL 0.27.2 · Transformers 5.1.0 · PyTorch 2.4.1+cu124
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Balaharikaran/Devstral-small-IFC-ACC-LoRA